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Biologically reactive chemicals alkylate DNA and induce
structural madifications in the form of covalent adductertain
bulky DNA adducts can persist, escape repair, and serve as dR,
templates for polymerase-mediated DNA synthesis, resulting in Ky
mutation and cancérCorrelating chemical structures and quantita-
tive levels of adducts with toxicity is central to understanding
chemical mechanisms of carcinogenesis for specific agents. Major
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low levels, adduct mixtures are often formed, and minor lesions NToo— N N o H
may have greater biological impact than more abundant products. b b
New molecular approaches for addressing specific low-abundance PG G FEnG1 - syndNap2

adducts are needed, and we describe here the first example of &g 1. Schematic representation of base-pair interactions for a standard
synthetic nucleoside that may serve as the chemical basis for a probes:C pair, alkylation-damage@®-BnG 1:C pair and proposed adduct:probe
of a bulky carcinogerDNA adduct. combination (dR= deoxyribose).
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Dozens of thermodynamically stable synthetic base pairs have been
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Scheme 14
reported and continue to emerge as powerful tools in areas such as
polymerase fidelityt, DNA helix stability > nucleic acids with novel
functionality$ and expanded genetic systehts,cite selected exam-
ples. Recently, Hirao and co-workers successfully have amplified
an entirely synthetic base pdiAmplified in a polymerase-mediated
process or used in hybridization-based strategies, synthetic nucleo- OR /LN,p\/\CN
sides might act as probes of DNA damage, but to our knowledge, oLy RIM A,

no examples of synthetic nucleosides that pair selectively with an

adduct generated in a natural physiological system are known.
06-Benzyldeoxyguanosind,(05-BnG; Figure 1) is a bulky DNA

a8 Reagents and conditions: (a) ethyl chloroformate, THF; (b) bistoluoyl
chloroglycoside, NaH/THF; (c¢) NaOMe/methanol; (d)'4dmethoxytrityl
chloride, pyridine; (e)N,N-diisopropyl-20-cyanoethyl phosphoramidic

adduct chosen for analysis because of its prominent role in nucleic chloride, EiN, CHClz.

acid chemistry and biology and the high frequency ©f-
alkylguanine lesion&? This adduct results naturally from exposure
to environmental carcinogefi® and is highly mutagenic, causing
G to C and G to T transversion, and G to A transition mutatffis.

08-Alkylguanine adducts have altered hydrogen-bonding capacity,
increased size, and decreased hydrophilicity relative to G (Figure 1).

On the basis of molecular modeling studiésye anticipated that
a diaminonaphthyl-derived nucleosid® @Nap; Figure 1) would
possess a hydrogen-bonding capacity complementa@f#8nG
and favorabler—x stacking and hydrophobic interactions between
the benzyl moiety o08-BnG and the naphthyl moiety of dNah

To evaluate theD®-BnG:dNap base pair in duplex DNA, we
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Figure 2. Thermal stabilities of natural, damaged, and dNap DNA.

prepared a series of oligonucleotides containing selected combina-that of the natural dG:dC pair (Figure 2, 00k, = 60.3 vs D6T,,
tions of DNA adduct, synthetic nucleoside, and/or natural bases. = 59.3). Sequence D5 represents a situation in which natural DNA

Nucleoside2 was synthesized from diaminonaphthal&{&cheme
1). Treatment o8 with ethyl chloroformate produced perimidinone
4 (70% yield), which was coupled with bistoluoyl chloroglycoside
to yield thef-isomer of5 as the major product. Deprotectior; 5
tritylation, and conversion to the'-phosphoramidites, required

for oligonucleotide synthesis, were achieved in 50% yield overall.

Duplex DNA stability was determined by thermal denaturation
of synthetic oligonucleotides. Melting temperaturgég)(were mea-
sured for complementary sequencéI5GTCGGTATAXC GG-

3 and B-CCGYTATACCGACAA-3 with varying bases incorpo-
rated at positions X and Y. The results indicate tB&BnG:dNap
is markedly stable (8.8M) with a T, value one degree lower than
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is damaged, giving rise to th®%-BnG adduct and a diminished
thermal stability. Further, the adduct:probe pBirwas compared

to O%-BnG paired with canonical bases. These combinations have
diminished stabilities relative to the synthetic pair by 5.0, 6.6, 4.7,
and 5.9°C for dG, dA, dC, and dT, respectively (Figure 2). Simi-
larly, for dNap paired opposite the natural badesdiminished to
55.3,54.8, 52.5, and 52°& for dG, dA, dC, and dT, respectively.
These data are comparable to optimized synthetic base pairs, in
which approximate ranges of-® °C in T, depressions are
considered highly stable and orthogonal systéhis, values for
point mutations in D1, which reflect the selectivity of natural base
pairs, decrease by an estimated average 4.9

10.1021/ja070688g CCC: $37.00 © 2007 American Chemical Society
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Table 1. Thermodynamic Parameters for Duplex Formation significant DNA adducD8-BnG. This is the first report of a stable
duplex  AH(kcalimol)  AS(callk-mol)  AGpssx (keallmol)  AAGias (kealimol) DNA base pair comprised of a biologically relevant bulky DNA
D1 859 530 177 adduct and a designed nucleoside partner. Synthetic nucleosides
D2 —67.2 —195 —9.1 8.6 that base pair specifically with DNA adducts have diverse potential
D6 —79.2 —218 -14.2 35 utility in the study of the impacts of chemical modification on DNA

biology and chemistry. Continued studies are aimed at gaining a
detailed understanding of the physical and structural origin of
adduct:probe base-pair stability, the design of more selective
analogues, and applications as structural probes.
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Figure 3. Stacking interactions i indicated in X-ray crystal structure computl_ng Instltu_te, for aSS|§tance with mole_cular models. Crystal-
(unit cell dimensions:a = 6.5 A; b = 8.7 A: ¢ = 23.5 A). lographic analysis was carried out by Dr. Victor G. Young, Jr. at
the X-ray Laboratory of the University of Minnesota.

A goal for potential biological applications is that dNap distin-
guish between isomeric adduct structures resulting from competing
positions of base alkylation. We compared damaged oligonucle-
otides that contained®-BnG or the isomeric addudi?-ben-
zyldeoxyguanosine7( N>-BnG). TheN?-BnG:dNap pair was less
stable, but the difference was smdij,(of 57.4°C, 1.9°C lower than

Supporting Information Available: Syntheses, NMR data, thermal
denaturation studies, crystallographic analysis, Job plots, and CD
spectra. This material is available free of charge via the Internet at
http://pubs.acs.org.
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